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The use of the thoery of continuous Markovian processes in problems of dyna- 
mic deformation of a stochastic elastic medium is considered. Equations are 

derived for the variations of geometric parameters of the wave front along a 
ray, which supplement the system of dynamic equations in the ray method. 
Certain hypotheses concerning statistical properties of a medium, which allow 

the formulation of the Fokker-Planck-Kolmogorov (FPK ) equation for the 
input system, are investigated. Solutions are obtained for particular cases in 
the form of normal logarithmic laws of intensity distribution. 

Equations which define the deformation of stochastically inhomogeneous media 
are statistically nonlinear, hence the closing [of equation 1 necessitates the introduction 
of hypotheses about statistical properties of considered fields [l-5]. The most complete 
probabilistic definition is obtained on the basis of the characteristic functional, however 

the methods of solving equations in variational derivatives are insufficiently developed 

C5 -8 1. Although Markovian processes make possible an effective solution t of many 
problems involving systems with concentrated parameters [4,9 - 111, they are unsuit - 

able for dispersed systems. 

The use of asymptotic (ray) methods [7, 8, 12- 161 for analyzing wave pro- 
cesses yields ordinary differential equations in coefficients of related expansions. Since 
the input system contains quantities which define variation of the front geometry of the 
propagating wave, it becomes necessary to introduce equations for the geometric para- 
meters, obtained by using the variational principle of the equation for geometric para- 

meters. The complete system of ordinary differential equations for the dynamic and 
geometric wave characteristics is nonlinear and depends on the form of inhomogeneity. 
The problem of statistical closing remains, but it becomes possible to apply the theor)! 
of Markovian processes [4, 10 1. The necessary condition for the use of Markovian 
approximation is the existence of a small parameter which defines the relation of the 

scale of variation of certain functions of elastic coefficients to other characteristic 
dimensions of the dynamic problem. The combination of asymptotic methods with the 
FPK method allows a fairly complete investigation of processes of harmonic and un- 

steady wave propagation in certain types of stochastically inhomogeneous media. 
The application of Markovian models in problems of electrodynamics and in 

the theory of turbulence was considered in C9,lll. Investigation of ray diffusion in 

approximations of geometric optics is carried out on the assumption of smallness of ray 

deviation from the initial direction, hence the need to consider the complete system 
of geometric characteristics did not arise. In [12,15] geometric variables were speci- 

fied approximately or appeared in dynamic equations in the form of free functions. 
The application of a Markovian type medium model in the calculation of the 
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effective elastic moduli was investigated in [17]. 
1 e Dynamics of a linear elastic stochastically inhomogeneous medium is de - 

fined by the equations 

(31. + FL) uj,ji + pui jj + k,i”j,j + I-l,j C”j,i + ui,j) - PUi” _= 0 (1.1) 

i=l,2,3 

where ui are components of the displacement vector, subscripts after the comma 
denote differentiation with respect to the corresponding coordinate z,, h (z,), and 

/L (5,) are the elastic moduli stochastically dependent on space coordinates. 
Equations (1.1) are stochastically nonlinear, and the closing of systems for mo- 

ments necessitates the introduction supplementary assumptions. The use of method of 

Green’s functions [4] and of the characteristic functional [6] presents considerable 
mathematical difficulties and the obtained approximate solutions are not always phy - 

sically clear, 
We seek the solution of (1.1) in the form of the ray series [7,8, 12-161 

Uj (Ic,, t) = kjo uj’)f(‘) [f - T, (Zn)] (fCk’ = fdfk-l)/ dS) (1.2) 

where t = ‘t (x~) is the position of the wave front ): at the instant of time t, and 
f(s) (S) is a function with a singularity at S = 0. 

For harmonic waves, always 

Uj (Icn, t) = Vj (&, y) exp [iv (t -7)l 

and for Vi (z,, y) we have the following asymptotic series in the inverse powers of frequency 

Solution Uj (.&, t) may also be represented in the form (1.2), when 

#) 
3 

= ik(p, f(k) (8) = 2$, i = f-1 

Hence all further investigations based on solution of the form (1.2) are valid for 
both the unsteady waves in the wave front neighborhood and for high-frequency har - 
manic waves. 

Using conventional methods [12,13 ] we obtain the recurrent relationships be - 
tween quantities Uj(‘). 

For the longitudinal ray solution we have 
Uj(k) = uj(k)J- + (p(k) z,j, uj(k)I 1 r,j, uj(-s) = +-r) ZZZ 0 (1.3) 
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where Q is the mean ~urva~re of the wave front, p = const is the denser, and 
dials denotes a derivative along the ray. 

The transverse ray solution satisfies similar equations, 
The main type of unstable wave di~ontinu~~ is defined by ~nct~on~(O~ (t - z) 

and the intensity variation of the longitudinal and also of the transverse discontinuity 
along the ray is defined by an equation of the form 

c = y’hlp, A, = h -+ 2 p, A, = p 

Equations (1.3 ) and (1,4 ) contain as a free function the quantity 52 which is 
a geometric characteristic of the propagating front. Formulas for geometric parameter 
variation along a ray are obtained below + 

We represent the equation of the wave surface in the paramedic form xi = Si 
@Ja, t> (% = 1, a> where no are curvilinear surface coordinates, 

According to Fermai?s principle a normal to the front satisfies the rela~onships 

C&f& = - g%p (In c),*, dR/ds = Y 015) 

where Y = {Vi} is a normal to surface 2, g”fi = zrE’lcpi is the first quadratic 
form of Z, za = {xa”) is the vector of the tangent to that surface along the coor- 
dinate line ua, and R = (a?} is the radius vector of points of the surface, 

Using formulas 

&cap% = b,$?, %Q = g~y~~ax~~, Y*Yi = 1, x& = 0 

of the theory of surfaces, we obtain the equations 

~~~~/~~ = (In e)+p + (In c),, (In 4~3 - g~&~~~~~& c&6) 

dwws = gQ*p [(In E),nS (ln I?),* + (In 4,sl -b ~g~s~a~~~~ 

~g~~~d~ = - 2b,@, dg@ids = SW@ 

dz,/ds = (In C),cLY - g%,ty 0.7) 

whicfx define the varia~on of covariant and contravariant components of the first and 
second quadratic forms of x and of the quantity za along a ray, 

Formulas (1.5 ) - (1. ‘7 ) with suitable mitial conditians completely determine the 
evolution of the ray and frontgeometryin the propagation process. 

We introduce the invariants 2Q = bxsgas, 2K = 4Q2 - b,pbas 
(the mean and Gaussian curvatures S respeotively ) and, taking into account equalities 
(1.6 ) L obtain 

dQf& = 2sts - K -i_ c,~p~~~/2c (1,8) 
dKJ& == 251K -j- 2~c,~~g~~~~ - e,&Wc 



1120 
N. P. Bestuzheva and A. V. Chtgarev 

* comma in the subscript in formulas (1.6 ) -(l. 8 ) denotes covariant differentiation. 

Formulas (1.4 )-(1.8 ) constitute a closed system of first order differential equ- 

ations, which for specified initial conditions and known velocity c defines the kine- 

matics and dynamics in the zero approximation. To obtain solutions of higher orders it 

is necessary to use Eq. (1.3 ) . 

2, We represent the input equations (1.3 )-(1.8 ) in the form 

d (&(“P))/ds = cDi &caQ), q&“P’), i = I, 2, . . ., n (2.1) 

where qkcap) is a random function of known probability characteristics. 
In this caseln c, d (lu c)lds, (In c),=,and (ln c),~~ are taken for such functions. 

Further transformations of (2.1) are linked with the introduction of formulas in 
which the random functions I, are expressed in terms of subsidiary functions 

qica@ with the following properties : 1) q$@) (s) form a random Gaussian field, 
2) (qi”:“) = 0, and 3) (qicafi) (a) qj’y6’ (s’)) -= 6 (s - a’) Aij(aa~S), where 
A .(aPr~) 

surface l’ z. 
is a quantity which defines the power of white noise q$ap) at points of 
Along the ray that power is assumed constant. 

If rlj’“‘)(s) are steady random functions of s with rational- fractional 

spectral densities, the equations for rlj assume the form 

d (Ilj’G”‘)lds = Fj (if”) + Gj (~k’~‘)) qk(ap)> j = I, 2,. . .( 1 (2.2) 

The use of subsidiary functions with zero correlation time for defining the ma - 
thematical model of stochastically inhomogeneous medium in the form (2.2) yields 
equations in &(aP) which belong to the class of systems that describe continuous 
multivariate Markovian processes [4, 10 1. 

System (2. l), (2.2), after renumbering, assumes the form 

d (E,,(+))/da = w, (clr(afi)) + f, (qh.(aB), &(aP)), m = 1, 2,. . ., I -+ n (2.3) 

Let US consider the case when Fj z 0 and Gj = 1 

d (qjca”)/ds = qj(a’) (s) (2.4) 

It follows from (2.4 ) that perturbations qj’“” are represented by the conventional 
Wiener process [18] with constant mathematical expectation 

(qjO(aB) . 
(Vj’“P’) = ~jo@a) 

1s the value of q/“B) when s = 0). For Markovian processes qi(@) (a) 

we obtain (q$“a) (s) I (s’) > = 0 when s’ < s , and the longitudinal corre- 
lation which inconsequence of (2.4) satisfies the equation d (~$“a) (a) rlj(Ya) (s’)‘) / 

ds = 0, is of the form 

The use of more complex models reduces to the problem of obtaining from a 
white noise a random functions with specific probability characteristics which are solved 
by means of the forming filter (2,2) [4,18], 

The complete system (2.3 ) which determines parameter variation of the internal 
geometry of the front and ray trajectories for the Wiener model 
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is of the form 

WQ) -= ((In c),~, (In c),&P, bp, ha@, gas, gap, R, 4, G} 
@7,Wf zz.z (0, 0, W’, W”, - 2 hap, Zb@, v, - 

P%3 On c),~, On 4,, y - &P7~~z~,) 
fP) = (4m clap, 0, 0, 0, 0, 0, 0, 0) 

W’ = (In c),+ 5 (In c),~ (In c),p - g~~b~~b~s 

Wff = g”ngfiY [(ln c),,, + (In c),, (lnc),,] + 3 g+banbfis 

(2.5) 

and for a Markovian model of the type (2.4 ) 

d (In C)/dS = 4 (S), d (~V~~~/~~ = 4ap fs) 

Nnfi = C.&C = (In &,7 -I- (In ~1,~ On 4,~ 

1 the equations for variation of intensity reduce to the form (2.3 ) in which 
Eif#), W,faB), and f$@) are defined ag follows: 

(2.6) 

The reduction of dynamic equations (1.3 ) - (I. 8 ) to the scheme of Markovian 
processes is based on the representation of input equations in the form (2.3 1, (2.6 Iand 

(2.5). This and the assumptions about the & correlation properties of certain functions 
of elastic coefficients make it possible to use the theory of continuous Markovian pro - 
cesses [4, II] according to which the combined density of distribution of the indicated 

characteristics satisfies the FPK equation. 
Assuming that the intensity is an element of the multivariate Markovian process 

(2.3), (2.6 ), for the distribution density P (x, NdLal bapl gap, .c) we obtain 

(2.7) 

It should be noted that for non-Gaussian fluctuations of functions q(@)(S) it is 

theoretically possible to obtain equations of the FPK type for the related characteristic 
~n~ti~al, but the ~tro~ction of the latter considerably complicates- solution of the 
problem. 

Below we adduce the solutions of (2.7 ) in some particular cases. 
3, Let us consider the problem of determining the probability density for the 

wave intensity in the case when the front curvatures are determinate functions of S. 

This condition impo&es restrictions on the properties of a medium which isassumedtobe 
random inhomogeneous along s and homogeneous along the front. 
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The solution of system (1.8 ) assumes the form 

Q (4 = (Q* - li5e.Y) x (a), K (.s) = A-,x (s) 

?4 {S> = (1 - 2 B,S +- &s 2)-l 

(3.1) 

where 52, and K, are the mean and the Gaussian curvatures of the front at the 
initial instant s = so. 

Let us consider two kinds of media: 1) d (ln c)/ds = 4 (s) and 2) d (In c)/ds 
= In c-j-q (s) , where q (s) represents white noise of constant power 4 N. Then for 
the Wiener model 1) the Logarithm of intensity satifies the stochastic equation 

dx (S)/dS = (QQ - fT*s) 3c (s) - 112 4 (s) (3.3) 

The FPK equation for the density dis~ribu~on of probability P (x, s) which co- 
rresponds to (3.2 ) is of the form 

Solving (3.3 ) with the initial condition P (x, 0) = 6 (x - x0), where Xo is the 
logarithm of initial density + we obtain 

P(+1/&.&++ [x--~;;;lnX(s)l*) 

Thus for X we obtain the normal distribution law with mathematical expect- 
ation XO i- f/2 In 1c (S) and dispersion Ns. 

To determine longitudinal correlation X we multiply Fq. (3.2) by X (8’) 

(s’ < 4 and average 

d (x (s} x (s’)>/& = (Q, - Q4 x (4 Cx (4) + 112 (9 (a) X (0) (3*&j 

Taking into account that (‘I (s) x (s’)) = 0, we obtain for (3.4) a Solution of the form 

(X (4 x (s’)) I= D (s/j - 112 Ix0 + f/2 Inx (s’)J IInx {s’) - In% (s)! (3.5) 

D (a’) = (X (s’) x (s’)) = l/2 Ns’ + [x0 + l/2 III x (s’j12 

The univariate density of probability distribution of intensity 0 may be re- 

presented in the form 

(3.6 1 

The expression for p(‘) (a, s) when the perturbation In c satisfies condition 

p(2) 
(0, $1 = lI&&) exp 

1 
-- 

I In (01 / oO) - ‘ia In x (~11~ 
!M (s) I 

(3.7) 

u2 (s) L= 1/Z [I - exp (- 2Ns)J 

is similarly derived, 
Formulas (3.6) and (3.7 ) show that for both models of medium the wave inten- 

sity obey the logari~mic-normal dis~ibution law. Note that the process W(l) does not 
have a steady mode. In the case of a plane wave (Bo=O, K0 = 0) distribution 
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wyo, s) becomes steady when S-+X , 
Curves (I and 2) of variation P(l)(,) and P@)(W) are shown in Fig. 1 for a 

plane wave and SN = 0.125 . Values w = 0.832o, (w = 0.895 w,) correspond to the 

maximum density of distribution P(l) (P(2)). The dash line represents the steady 
state distribution P(s) (w). In the other limit case (S = 0) P(r) = Pc2) = 6 (0 - wo). 
Variation of density P’l)(o) for so = 0.25~ and sN = 1 is represented by curves 
3 and 4 S respectively. 

4 

0 08 Z6 o/u, 
Fig. 1 

0.8 7 w/w, 
Fig. 2 

The effect of power N on the pattern of intensity d~tribution was investigated 
in the case of a spherical wave of initial radius R0 with s I R. = 0.01. The curves 
calculated for models 1) and 2) are the same to within 0.01 . They are shown in Fig. 
2 by curves 1, 2, and 3 for R0 N equal 0.25, 0.5 and 1, respectively. 

Investigation of probabilistic properties of higher order solutions requires the use 

of recurrent formulas (1.3 ) which constitute a system of ordinary differential equations 
of the type (2.3 ) and reduce to a scheme of the Markovian process similarly to the sys- 
tem of Eqs. (2.3 ) , (2.6 ) and (2.7 ) for the determination of intensity. Each step of the 
recurrent process is accompanied by an increase by unity of the order of the derivative 
along the ray of quantities that define the model of medium with the 6- correlation 
function q (s). Hence the k-th order solution requires the introduction of new, as corn - 
pared to the-( k - 1, -st order, assumptions concerning the statistical properties of cer - 

tain functions of the medium parameters, Equations for subsequent approximations for 

probability densities are generally of the operator form and contain variational derivatives, 

Finally ) we turn to equations of rays, which can be presented in the form 
dVi J dS = (In C),i - ViVj (In c),j, dxi f dS = Vi [9,11], and are investigated separ- 

ately from the surface geometry. Passing to ray coordinates uDL, s related to the 
front geometry makes it possible to present these relationships in the form of Qs.(l. 5 ) 
which have to be considered together with (1.6) and (1.7 ). In the Wiener model with 
fixed ua the ray equations are reduced to the set (2.3 )-(2.5). The assumption that 

surface I: in the neighborhood of point ua = const is a plane yields the equations 
dR, I ds = v (s), dv J ds = d (In c) / dRL (RvL is the plane transverse dislocation) that 

are simpler than (1.5 ) - (1.7 > and coincide with formulas in 19 , Xl 1 derived in the case 
of small angular deflections of rays and are suitable for the complete analysis in the 
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Markovian approximation. In the general case formulas (1.5 > - (1. ‘7 1 are closed and 
can be considered independently from Eqs. (1.3 > and (1.4 ) , 

The above analysis shows that it is possible to obtain on the basis of the Fermat 
principle equations for the geometric characteristics of the front. These equations close 

the system of related dynamic formulas. On fairly general assumptions it is possible 
to use the FPK method for defining the nonlinear input system. The distribution of 
elastic parameters is then close to the logarithmic-normal, which conforms to experi- 
mental data on rock. The obtained front intensity distributions in the considered ex - 

amples are also closely observed in [61. 

REFERENCES 

1. N o v oz h i 1 o v , V. V., The relation between mathematical expectations of stress 
and strain tensors in statistically isotropic homogeneous elastic bodies .: 
PMM, Vol. 34, No. 1, 1970. 

2. Bolotin, V.V., Gol’denblat,I.I., and Smirnov, A. F., Structural 
Mechanics. Moscow, Stroiizdat , 1972. 

3. Lomakin, V. A., StatisticalMechanics of Deformable Solid Bodies. Moscow, “Nauka’il970. 

4. Bolotin, V.V., Application of Methods of the Probability and Reliability Theo- 

ries in the Calculation of Structures. Moscow, Stroiizdat . 1971. 
5. Sobchik, K., Wave propagation instochastic media. Mekhanika, Sb. Perev. ,No. 6,1974. 

6. Tatarskii, V.I., Propagation of Waves in Turbulent Atmosphere. MOSCOW, “Nauka”, 1967. 

7. Keller, J.B., Stochastic equations and wave propagation in random media. 

Proc. Sympos. Appl. Math., Vol. 16, 1964. 
8. Keller, J. B., Wave propagation in random media. Proc. Sympos. Appl. Math. Vol. 13,1962. 

9. Kliatskin, V.I., Statistical Definition of Dynamic Systems with Fluctuating 
Parameters. Moscow, ” Nauka ” , 1975. 

10. Krasovskii, A.A., Phase Space and Statistical Theory of Dynamic Systems. 

Moscow, ” Nauka ” , 1974. 
11. Kliatskin, V.I. and Tatarskii, V.I., Approximation of random diffusion 

process in some unsteady statistical problems of physics. Uspekhi Fiz . Nauk , 
Vol. 110, No. 4, 1973. 

12. Alekseev, A.S., Babich, V.M., and Gel*chinskii,B.Ia.,The ray method 

of calculating intensity of wave fronts. Co11 : Problems of the Dynamic Theory of 
Seismic Wave Propagation. Izd. Leningrad University, 1961. 

13. Babich, V.M. and Buldyrev, V.C., Asymptotic Methods in Problems of 

Short Wave Diffraction. Moscow, ” Nauka ” , 1972. 
14. Ivlev, D.D. and Bykovtsev, G.I., Theory of the Compressible Plastic Body. _ 

Moscow, ” Nauka “, &971. 
15. Chigarev, A.V., Propagation of shock waves in stochastically inhomogeneous 

elastic medium. Prikl. Mekh., Vol. 8, NO. 5, 1972. 

16. Haselgrove, J., Bay theory and a new method for ray - tracing. Proc * 
Cambridge Conf. Phys . Ionosphere. 1955. 

17. Fokin, A.G. andshermergor, T.D., On the CalCUlatiOn of elasticity 

moduli of heterogeneous media. PMTF, NO. 3 , 1968. 

18. Pugachev, V.S., Kazakov, I. E., and Evlanov, L. G., Fundamentals of the 
Statistical Theory of Automatic Systems. Moscow, “Mashinostroenie”, 1974. 

Translated by J. J. D. 


